
Transport Layer

Objectives

The transport layer is responsible for process-to-process delivery of the entire message.
A process is an application program running on a host. Whereas the network layer
oversees source-to-destination delivery of individual packets, it does not recognize any
relationship between those packets. It treats each one independently, as though each
piece belonged to a separate message, whether or not it does. The transport layer, on the
other hand, ensures that the whole message arrives intact and in order, overseeing both
error control and flow control at the source-to-destination level.

The transport layer is responsible for the delivery
of a message from one process to another.

Computers often run several programs at the same time. For this reason, source­
to-destination delivery means delivery not only from one computer to the next but also
from a specific process on one computer to a specific process on the other. The transport
layer header must therefore include a type of address called a service-point address in
the OSI model and port number or port addresses in the Internet and TCP/IP protocol
suite.

A transport layer protocol can be either connectionless or connection-oriented.
A connectionless transport layer treats each segment as an independent packet and
delivers it to the transport layer at the destination machine. A connection-oriented
transport layer makes a connection with the transport layer at the destination machine
first before delivering the packets. After all the data is transferred, the connection is
terminated.

In the transport layer, a message is normally divided into transmittable segments. A
connectionless protocol, such as UDP, treats each segment separately. A connection­
oriented protocol, such as TCP and SCTP, creates a relationship between the segments
using sequence numbers.

Like the data link layer, the transport layer may be responsible for flow and error
control. However, flow and error control at this layer is performed end to end rather
than across a single link. We will see that one of the protocols discussed in this part of



the book, UDP, is not involved in flow or error controL On the other hand, the other two
protocols, TCP and SCTP, use sliding windows for flow control and an acknowledgment
system for error controL

Part 5 of the book is devoted to the transport layer
and the services provided by this layer.

Chapters

This part consists of two chapters: Chapters 23 and 24.

Chapter 23

Chapter 23 discusses three transport layer protocols in the Internet: UDP, TCP, and
SCTP. The first, User Datagram Protocol (UDP), is a connectionless, unreliable proto­
col that is used for its efficiency. The second, Transmission Control Protocol (TCP), is a
connection-oriented, reliable protocol that is a good choice for data transfer. The third,
Stream Control Transport Protocol (SCTP) is a new transport-layer protocol designed
for multimedia applications.

Chapter 24

Chapter 24 discuss two related topics: congestion control and quality of service. Although
these two issues can be related to any layer, we discuss them here with some references to
other layers.



CHAPTER 23

Process-la-Process Delivery:
UDp, TCp, and SCTP

We begin this chapter by giving the rationale for the existence of the transport layer­
the need for process-to-process delivery. We discuss the issues arising from this type of
delivery, and we discuss methods to handle them.

The Internet model has three protocols at the transport layer: UDP, TCP, and SCTP.
First we discuss UDP, which is the simplest of the three. We see how we can use this
very simple transport layer protocol that lacks some of the features of the other two.

We then discuss TCP, a complex transport layer protocol. We see how our previously
presented concepts are applied to TCP. We postpone the discussion of congestion control
and quality of service in TCP until Chapter 24 because these two topics apply to the data
link layer and network layer as well.

We finally discuss SCTP, the new transport layer protocol that is designed for
multihomed, multistream applications such as multimedia.

23.1 PROCESS-TO-PROCESS DELIVERY
The data link layer is responsible for delivery of frames between two neighboring nodes
over a link. This is called node-to-node delivery. The network layer is responsible for
delivery of datagrams between two hosts. This is called host-to-host delivery. Communi­
cation on the Internet is not defined as the exchange of data between two nodes or
between two hosts. Real communication takes place between two processes (application
programs). We need process-to-process delivery. However, at any moment, several pro­
cesses may be running on the source host and several on the destination host. To complete
the delivery, we need a mechanism to deliver data from one of these processes running on
the source host to the corresponding process running on the destination host.

The transport layer is responsible for process-to-process delivery-the delivery of
a packet, part of a message, from one process to another. Two processes communicate
in a client/server relationship, as we will see later. Figure 23.1 shows these three types
of deliveries and their domains.

The transport layer is responsible for process-to-process delivery.

703
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Figure 23.1 Types ofdata deliveries
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Client/Server Paradigm

Although there are several ways to achieve process-to-process communication, the most
common one is through the client/server paradigm. A process on the local host, called
a client, needs services from a process usually on the remote host, called a server.

Both processes (client and server) have the same name. For example, to get the day
and time from a remote machine, we need a Daytime client process running on the
local host and a Daytime server process running on a remote machine.

Operating systems today support both multiuser and multiprogramming environ­
ments. A remote computer can run several server programs at the same time, just as
local computers can run one or more client programs at the same time. For communica­
tion, we must define the following:

1. Local host

2. Local process

3. Remote host

4. Remote process

Addressing

Whenever we need to deliver something to one specific destination among many, we need
an address. At the data link layer, we need a MAC address to choose one node among sev­
eral nodes if the connection is not point-to-point. A frame in the data link layer needs a
destination MAC address for delivery and a source address for the next node's reply.

At the network layer, we need an IP address to choose one host among millions. A
datagram in the network layer needs a destination IP address for delivery and a source
IP address for the destination's reply.

At the transport layer, we need a transport layer address, called a port number, to
choose among multiple processes running on the destination host. The destination port
number is needed for delivery; the source port number is needed for the reply.

In the Internet model, the port numbers are 16-bit integers between 0 and 65,535.
The client program defines itself with a port number, chosen randomly by the transport
layer software running on the client host. This is the ephemeral port number.
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The server process must also define itself with a port number. This port number,
however, cannot be chosen randomly. If the computer at the server site runs a server
process and assigns a random number as the port number, the process at the client site
that wants to access that server and use its services will not know the port number. Of
course, one solution would be to send a special packet and request the port number of a
specific server, but this requires more overhead. The Internet has decided to use universal
port numbers for servers; these are called well-known port numbers. There are some
exceptions to this rule; for example, there are clients that are assigned well-known port
numbers. Every client process knows the well-known port number of the corresponding
server process. For example, while the Daytime client process, discussed above, can
use an ephemeral (temporary) port number 52,000 to identify itself, the Daytime server
process must use the well-known (permanent) port number 13. Figure 23.2 shows this
concept.

Figure 23.2 Port numbers
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It should be clear by now that the IP addresses and port numbers play different
roles in selecting the final destination of data. The destination IP address defines the
host among the different hosts in the world. After the host has been selected, the port
number defines one of the processes on this particular host (see Figure 23.3).

lANA Ranges

The lANA (Internet Assigned Number Authority) has divided the port numbers into
three ranges: well known, registered, and dynamic (or private), as shown in Figure 23.4.

o Well-known ports. The ports ranging from 0 to 1023 are assigned and controlled
by lANA. These are the well-known ports.

o Registered ports. The ports ranging from 1024 to 49,151 are not assigned or con­
trolled by lANA. They can only be registered with lANA to prevent duplication.

o Dynamic ports. The ports ranging from 49,152 to 65,535 are neither controlled
nor registered. They can be used by any process. These are the ephemeral ports.
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Figure 23.3 IP addresses versus port numbers
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Socket Addresses

Process-to-process delivery needs two identifiers, IP address and the port number, at
each end to make a connection. The combination of an IP address and a port number is
called a socket address. The client socket address defines the client process uniquely
just as the server socket address defines the server process uniquely (see Figure 23.5).

A transport layer protocol needs a pair of socket addresses: the client socket address
and the server socket address. These four pieces of information are part of the IP header
and the transport layer protocol header. The IP header contains the IP addresses; the
UDP or TCP header contains the port numbers.

Figure 23.5 Socket address

Port number
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Multiplexing and Demultiplexing

The addressing mechanism allows multiplexing and demultiplexing by the transport
layer, as shown in Figure 23.6.

Figure 23.6 Multiplexing and demultiplexing

Processes Processes

Multiplexing

At the sender site, there may be several processes that need to send packets. However,
there is only one transport layer protocol at any time. This is a many-to-one relationship
and requires multiplexing. The protocol accepts messages from different processes,
differentiated by their assigned port numbers. After adding the header, the transport layer
passes the packet to the network layer.

Demultiplexing

At the receiver site, the relationship is one-to-many and requires demultiplexing. The
transport layer receives datagrams from the network layer. After error checking and
dropping of the header, the transport layer delivers each message to the appropriate
process based on the port number.

Connectionless Versus Connection-Oriented Service

A transport layer protocol can either be connectionless or connection-oriented.

Connectionless Service

In a connectionless service, the packets are sent from one party to another with no need
for connection establishment or connection release. The packets are not numbered; they
may be delayed or lost or may arrive out of sequence. There is no acknowledgment
either. We will see shortly that one of the transport layer protocols in the Internet model,
UDP, is connectionless.

Connection~Oriented Service

In a connection-oriented service, a connection is first established between the sender
and the receiver. Data are transferred. At the end, the connection is released. We will see
shortly that TCP and SCTP are connection-oriented protocols.
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Reliable Versus Unreliable

The transport layer service can be reliable or unreliable. If the application layer program
needs reliability, we use a reliable transport layer protocol by implementing flow and
error control at the transport layer. This means a slower and more complex service. On
the other hand, if the application program does not need reliability because it uses its
own flow and error control mechanism or it needs fast service or the nature of the service
does not demand flow and error control (real-time applications), then an unreliable
protocol can be used.

In the Internet, there are three common different transport layer protocols, as we have
already mentioned. UDP is connectionless and unreliable; TCP and SCTP are connection­
oriented and reliable. These three can respond to the demands of the application layer
programs.

One question often comes to the mind. If the data link layer is reliable and has flow
and error control, do we need this at the transport layer, too? The answer is yes. Reliability
at the data link layer is between two nodes; we need reliability between two ends. Because
the network layer in the Internet is unreliable (best-effort delivery), we need to implement
reliability at the transport layer. To understand that error control at the data link layer does
not guarantee error control at the transport layer, let us look at Figure 23.7.

Figure 23.7 Error control

- Error is checked in these paths by the data link layer
- Error is not checked in these paths by the data link layer
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As we will see, flow and error control in TCP is implemented by the sliding window
protocol, as discussed in Chapter 11. The window, however, is character-oriented,
instead of frame-oriented.

Three Protocols

The original TCP/IP protocol suite specifies two protocols for the transport layer: UDP
and TCP. We first focus on UDP, the simpler of the two, before discussing TCP. A new
transport layer protocol, SCTP, has been designed, which we also discuss in this chapter.
Figure 23.8 shows the position of these protocols in the TCP/IP protocol suite.



SECTION 23.2 USER DATAGRAM PROTOCOL (UDP) 709

Figure 23.8 Position of UDp, TCp, and SCTP in TCPIIP suite
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23.2 USER DATAGRAM PROTOCOL (UDP)
The User Datagram Protocol (UDP) is called a connectionless, unreliable transport
protocol. It does not add anything to the services of IP except to provide process-to­
process communication instead of host-to-host communication. Also, it performs very
limited error checking.

IfUDP is so powerless, why would a process want to use it? With the disadvantages
come some advantages. UDP is a very simple protocol using a nrinimum of overhead. If
a process wants to send a small message and does not care much about reliability, it can
use UDP. Sending a small message by using UDP takes much less interaction between
the sender and receiver than using TCP or SCTP.

Well-Known Ports for UDP

Table 23.1 shows some well-known port numbers used by UDP. Some port numbers
can be used by both UDP and TCP. We discuss them when we talk about TCP later in
the chapter.

Table 23.1 Well-known ports used with UDP

Port Protocol Description

7 Echo Echoes a received datagram back to the sender

9 Discard Discards any datagram that is received

11 Users Active users
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Table 23.1 Well-known ports used with UDP (continued)

Port Protocol Description

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

53 Nameserver Domain Name Service

67 BOOTPs Server port to download bootstrap information

68 BOOTPc Client port to download bootstrap information

69 TFTP Trivial File Transfer Protocol

III RPC Remote Procedure Call

123 NTP Network Time Protocol

161 SNMP Simple Network Management Protocol

162 SNMP Simple Network Management Protocol (trap)

Example 23.1

In UNIX, the well-known ports are stored in a file called fetcfservices. Each line in this file gives
the name of the server and the well-known port number. We can use the grep utility to extract the
line corresponding to the desired application. The following shows the port for FTP. Note that
FrP can use port 21 with either UDP or TCP.

$grep
ftp
fip

ftp fetclservices
21ftcp
211udp

SNMP uses two port numbers (161 and 162), each for a different purpose, as we will see in
Chapter 28.

$grep
snmp
snmp
snmptrap

snmp fetclservices
161ftcp
1611udp
162/udp

#Simple Net Mgmt Proto
#Simple Net Mgmt Proto
#Traps for SNMP

User Datagram
UDP packets, called user datagrams, have a fixed-size header of 8 bytes. Figure 23.9
shows the format of a user datagram.

The fields are as follows:

o Source port number. This is the port number used by the process running on the
source host. It is 16 bits long, which means that the port number can range from 0 to
65,535. If the source host is the client (a client sending a request), the port number, in
most cases, is an ephemeral port number requested by the process and chosen by the
UDP software running on the source host. If the source host is the server (a server
sending a response), the port number, in most cases, is a well-known port number.
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Figure 23.9 User datagram format
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o Destination port number. This is the port number used by the process running on
the destination host. It is also 16 bits long. If the destination host is the server (a
client sending a request), the port number, in most cases, is a well-known port
number. If the destination host is the client (a server sending a response), the port
number, in most cases, is an ephemeral port number. In this case, the server copies
the ephemeral port number it has received in the request packet.

o Length. This is a 16-bit field that defines the total length of the user datagram,
header plus data. The 16 bits can define a total length of 0 to 65,535 bytes. How­
ever, the total length needs to be much less because a UDP user datagram is stored
in an IP datagram with a total length of 65,535 bytes.

The length field in a UDP user datagram is actually not necessary. A user
datagram is encapsulated in an IP datagram. There is a field in the IP datagram
that defines the total length. There is another field in the IP datagram that defines
the length of the header. So if we subtract the value of the second field from the
first, we can deduce the length of a UDP datagram that is encapsulated in an
IP datagram.

UDP length = IP length - IP header's length

However, the designers of the UDP protocol felt that it was more efficient for the
destination UDP to calculate the length of the data from the information provided
in the UDP user datagram rather than ask the IP software to supply this information.
We should remember that when the IP software delivers the UDP user datagram to
the UDP layer, it has already dropped the IP header.

o Checksum. This field is used to detect errors over the entire user datagram (header
plus data). The checksum is discussed next.

Checksum
We have already talked about the concept of the checksum and the way it is calculated
in Chapter 10. We have also shown how to calculate the checksum for the IP and ICMP
packet. We now show how this is done for UDP.



712 CHAPTER 23 PROCESS-TO-PROCESS DELIVERY: UDp, TCp, AND SCTP

The UDP checksum calculation is different from the one for IP and ICMP. Here
the checksum includes three sections: a pseudoheader, the UDP header, and the data
coming from the application layer.

The pseudoheader is the part of the header of the IP packet in which the user data­
gram is to be encapsulated with some fields filled with Os (see Figure 23.10).

Figure 23.10 Pseudoheader for checksum calculation

32-bit source IP address

32-bit destination IP address

AliOs I 8-bit protocol 16-bit UDP total length
(17)

Source port address Destination port address
16 bits 16 bits

UDP total length Checksum
16 bits 16 bits

J)ata

(padding must be added to make the data a multiple of 16 bits)

If the checksum does not include the pseudoheader, a user datagram may arrive safe
and sound. However, if the IP header is corrupted, it may be delivered to the wrong host.

The protocol field is added to ensure that the packet belongs to UDP, and not
to other transport-layer protocols. We will see later that if a process can use either UDP
or TCP, the destination port number can be the same. The value of the protocol field
for UDP is 17. If this value is changed during transmission, the checksum calculation at
the receiver will detect it and UDP drops the packet. It is not delivered to the wrong
protocol.

Note the similarities between the pseudoheader fields and the last 12 bytes of the
IP header.

Example 23.2

Figure 23.11 shows the checksum calculation for a very small user datagram with only 7 bytes
of data. Because the number of bytes of data is odd, padding is added for checksum calcUlation.
The pseudoheader as well as the padding will be dropped when the user datagram is delivered
to IP.

Optional Use ofthe Checksum

The calculation of the checksum and its inclusion in a user datagram are optional. If
the checksum is not calculated, the field is filled with 1s. Note that a calculated check­
sum can never be allIs because this implies that the sum is all Os, which is impossible
because it requires that the value of fields to be Os.
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Figure 23.11 Checksum calculation ofa simple UDP user datagram
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10011001 00010010~ 153.18
00001000 01101001~ 8.105
10101011 00000010~ 171.2
00001110 00001010~ 14.10
00000000 00010001~ oand 17
00000000 00001111~ 15
00000100 00111111~ 1087
00000000 00001101~ 13
00000000 00001111~ 15
00000000 00000000~ 0 (checksum)
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01010011 01010100~ Sand T
01001001 01001110~ I and N
010001 II 00000000~ G and 0 (padding)
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UDP Operation

UDP uses concepts common to the transport layer. These concepts will be discussed
here briefly, and then expanded in the next section on the TCP protocol.

Connectionless Services

As mentioned previously, UDP provides a connectionless service. This means that each
user datagram sent by UDP is an independent datagram. There is no relationship
between the different user datagrams even if they are coming from the same source pro­
cess and going to the same destination program. The user datagrams are not numbered.
Also, there is no connection establishment and no connection termination, as is the case
for TCP. This means that each user datagram can travel on a different path.

One of the ramifications of being connectionless is that the process that uses UDP
cannot send a stream of data to UDP and expect UDP to chop them into different
related user datagrams. Instead each request must be small enough to fit into one user
datagram. Only those processes sending short messages should use UDP.

Flow and Error Control

UDP is a very simple, unreliable transport protocol. There is no flow control and hence
no window mechanism. The receiver may overflow with incoming messages.

There is no error control mechanism in UDP except for the checksum. This means
that the sender does not know if a message has been lost or duplicated. When the receiver
detects an error through the checksum, the user datagram is silently discarded.

The lack of flow control and error control means that the process using UDP
should provide these mechanisms.

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates and
decapsulates messages in an IP datagram.
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Queuing

We have talked about ports without discussing the actual implementation of them. In
UDP, queues are associated with ports (see Figure 23.12).

Figure 23.12 Queues in UDP
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At the client site, when a process starts, it requests a port number from the operating
system. Some implementations create both an incoming and an outgoing queue associated
with each process. Other implementations create only an incoming queue associated
with each process.

Note that even if a process wants to communicate with multiple processes, it
obtains only one port number and eventually one outgoing and one incoming queue.
The queues opened by the client are, in most cases, identified by ephemeral port numbers.
The queues function as long as the process is running. When the process terminates, the
queues are destroyed.

The client process can send messages to the outgoing queue by using the source
port number specified in the request. UDP removes the messages one by one and, after
adding the UDP header, delivers them to IP. An outgoing queue can overflow. If this
happens, the operating system can ask the client process to wait before sending any
more messages.

When a message arrives for a client, UDP checks to see if an incoming queue has
been created for the port number specified in the destination port number field of the
user datagram. If there is such a queue, UDP sends the received user datagram to the
end of the queue. If there is no such queue, UDP discards the user datagram and asks
the ICMP protocol to send a port unreachable message to the server. All the incoming
messages for one particular client program, whether coming from the same or a different
server, are sent to the same queue. An incoming queue can overflow. If this happens,
UDP drops the user datagram and asks for a port unreachable message to be sent to
the server.

At the server site, the mechanism of creating queues is different. In its simplest form,
a server asks for incoming and outgoing queues, using its well-known port, when it starts
running. The queues remain open as long as the server is running.

When a message arrives for a server, UDP checks to see if an incoming queue has
been created for the port number specified in the destination port number field of the user
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datagram. If there is such a queue, UDP sends the received user datagram to the end of
the queue. If there is no such queue, UDP discards the user datagram and asks the ICMP
protocol to send a port unreachable message to the client. All the incoming messages
for one particular server, whether coming from the same or a different client, are sent to
the same queue. An incoming queue can overflow. If this happens, UDP drops the user
datagram and asks for a port unreachable message to be sent to the client.

When a server wants to respond to a client, it sends messages to the outgoing queue,
using the source port number specified in the request. UDP removes the messages one
by one and, after adding the UDP header, delivers them to IP. An outgoing queue can
overflow. If this happens, the operating system asks the server to wait before sending
any more messages.

Use ofUDP

The following lists some uses of the UDP protocol:

o UDP is suitable for a process that requires simple request-response communication
with little concern for flow and error control. It is not usually used for a process
such as FrP that needs to send bulk data (see Chapter 26).

o UDP is suitable for a process with internal flow and error control mechanisms. For
example, the Trivial File Transfer Protocol (TFTP) process includes flow and error
control. It can easily use UDP.

o UDP is a suitable transport protocol for multicasting. Multicasting capability is
embedded in the UDP software but not in the TCP software.

o UDP is used for management processes such as SNMP (see Chapter 28).

o UDP is used for some route updating protocols such as Routing Information Protocol
(RIP) (see Chapter 22).

23.3 TCP
The second transport layer protocol we discuss in this chapter is called Transmission
Control Protocol (TCP). TCP, like UDP, is a process-to-process (program-to-program)
protocol. TCP, therefore, like UDP, uses port numbers. Unlike UDP, TCP is a connection­
oriented protocol; it creates a virtual connection between two TCPs to send data. In
addition, TCP uses flow and error control mechanisms at the transport level.

In brief, TCP is called a connection-oriented, reliable transport protocol. It adds
connection-oriented and reliability features to the services of IP.

TCP Services

Before we discuss TCP in detail, let us explain the services offered by TCP to the pro­
cesses at the application layer.

Process-to-Process Communication

Like UDP, TCP provides process-to-process communication using port numbers. Table 23.2
lists some well-known port numbers used by TCP.
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Table 23.2 Well-known ports used by TCP

Port Protocol Description

7 Echo Echoes a received datagram back to the sender

9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

20 FIP, Data File Transfer Protocol (data connection)

21 FIP, Control File Transfer Protocol (control connection)

23 TELNET Tenninal Network

25 SMTP Simple Mail Transfer Protocol

53 DNS Domain Name Server

67 BOOTP Bootstrap Protocol

79 Finger Finger

80 HTTP Hypertext Transfer Protocol

111 RPC Remote Procedure Call

Stream Delivery Service

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a process (an application pro­
gram) sends messages, with predefined boundaries, to UDP for delivery. UDP adds its
own header to each of these messages and delivers them to IP for transmission. Each
message from the process is calIed a user datagram and becomes, eventually, one IP
datagram. Neither IP nor UDP recognizes any relationship between the datagrams.

TCP, on the other hand, allows the sending process to deliver data as a stream of
bytes and allows the receiving process to obtain data as a stream of bytes. TCP creates
an environment in which the two processes seem to be connected by an imaginary "tube"
that carries their data across the Internet. This imaginary environment is depicted in
Figure 23.13. The sending process produces (writes to) the stream of bytes, and the
receiving process consumes (reads from) them.

Figure 23.13 Stream delivery

Sending
process

Receiving
process

TCP TCP



SECTION 23.3 TCP 717

Sending and Receiving Buffers Because the sending and the receiving processes may
not write or read data at the same speed, TCP needs buffers for storage. There are two
buffers, the sending buffer and the receiving buffer, one for each direction. (We will see
later that these buffers are also necessary for flow and error control mechanisms used
by TCP.) One way to implement a buffer is to use a circular array of I-byte locations as
shown in Figure 23.14. For simplicity, we have shown two buffers of 20 bytes each;
normally the buffers are hundreds or thousands of bytes, depending on the implemen­
tation. We also show the buffers as the same size, which is not always the case.

Figure 23.14 Sending and receiving buffers
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Figure 23.14 shows the movement of the data in one direction. At the sending site,
the buffer has three types of chambers. The white section contains empty chambers that
can be filled by the sending process (producer). The gray area holds bytes that have
been sent but not yet acknowledged. TCP keeps these bytes in the buffer until it receives
an acknowledgment. The colored area contains bytes to be sent by the sending TCP.
However, as we will see later in this chapter, TCP may be able to send only part of this
colored section. This could be due to the slowness of the receiving process or perhaps
to congestion in the network. Also note that after the bytes in the gray chambers are
acknowledged, the chambers are recycled and available for use by the sending process.
This is why we show a circular buffer.

The operation of the buffer at the receiver site is simpler. The circular buffer is
divided into two areas (shown as white and colored). The white area contains empty
chambers to be filled by bytes received from the network. The colored sections contain
received bytes that can be read by the receiving process. When a byte is read by the
receiving process, the chamber is recycled and added to the pool of empty chambers.

Segments Although buffering handles the disparity between the speed of the producing
and consuming processes, we need one more step before we can send data. The IP layer,
as a service provider for TCP, needs to send data in packets, not as a stream of bytes. At
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the transport layer, TCP groups a number of bytes together into a packet called a segment.
TCP adds a header to each segment (for control purposes) and delivers the segment to the
IP layer for transmission. The segments are encapsulated in IP datagrams and transmit­
ted. This entire operation is transparent to the receiving process. Later we will see that
segments may be received out of order, lost, or corrupted and resent. All these are handled
by TCP with the receiving process unaware of any activities. Figure 23.15 shows how
segments are created from the bytes in the buffers.

Figure 23.15 TCP segments
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Note that the segments are not necessarily the same size. In Figure 23.15, for sim­
plicity, we show one segment carrying 3 bytes and the other carrying 5 bytes. In reality,
segments carry hundreds, if not thousands, of bytes.

Full-Duplex Communication

TCP offers full-duplex service, in which data can flow in both directions at the same time.
Each TCP then has a sending and receiving buffer, and segments move in both directions.

Connection-Oriented Service

TCP, unlike UDP, is a connection-oriented protocol. When a process at site A wants to
send and receive data from another process at site B, the following occurs:

1. The two TCPs establish a connection between them.

2. Data are exchanged in both directions.

3. The connection is terminated.

Note that this is a virtual connection, not a physical connection. The TCP segment is
encapsulated in an IP datagram and can be sent out of order, or lost, or corrupted, and then
resent. Each may use a different path to reach the destination. There is no physical connec­
tion. TCP creates a stream-oriented environment in which it accepts the responsibility of
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delivering the bytes in order to the other site. The situation is similar to creating a bridge
that spans multiple islands and passing all the bytes from one island to another in one
single connection. We will discuss this feature later in the chapter.

Reliable Service

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to check
the safe and sound arrival of data. We will discuss this feature further in the section on
error control.

TCP Features
To provide the services mentioned in the previous section, TCP has several features that
are briefly summarized in this section and discussed later in detail.

Numbering System

Although the TCP software keeps track of the segments being transmitted or received,
there is no field for a segment number value in the segment header. Instead, there are
two fields called the sequence number and the acknowledgment number. These two
fields refer to the byte number and not the segment number.

Byte Number TCP numbers all data bytes that are transmitted in a connection. Number­
ing is independent in each direction. When TCP receives bytes of data from a process, it
stores them in the sending buffer and numbers them. The numbering does not necessarily
start from O. Instead, TCP generates a random number between 0 and 232 - 1 for the num­
ber of the first byte. For example, if the random number happens to be 1057 and the total
data to be sent are 6000 bytes, the bytes are numbered from 1057 to 7056. We will see that
byte numbering is used for flow and error control.

The bytes of data being transferred in each connection are numbered by TCP.
The numbering starts with a randomly generated number.

Sequence Number After the bytes have been numbered, TCP assigns a sequence
number to each segment that is being sent. The sequence number for each segment is
the number of the first byte carried in that segment.

Example 23.3

Suppose a TCP connection is transferring a file of 5000 bytes. The first byte is numbered 1O,00l.
What are the sequence numbers for each segment if data are sent in five segments, each carrying
1000 bytes?

Solution
The following shows the sequence number for each segment:

Segment 1 Sequence Number: 10,001 (range: 10,001 to 11,(00)
Segment 2 Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3 Sequence Number: 12,001 (range: 12,001 to 13,000)
Segment 4 Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment 5 Sequence Number: 14,001 (range: 14,001 to 15,000)
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The value in the sequence number field of a segment defines the
number of the first data byte contained in that segment.

When a segment carries a combination of data and control information (piggy­
backing), it uses a sequence number. If a segment does not carry user data, it does not
logically define a sequence number. The field is there, but the value is not valid. However,
some segments, when carrying only control information, need a sequence number to
allow an acknowledgment from the receiver. These segments are used for connection
establishment, termination, or abortion. Each of these segments consumes one sequence
number as though it carried 1 byte, but there are no actual data. If the randomly generated
sequence number is x, the first data byte is numbered x + 1. The byte x is considered a
phony byte that is used for a control segment to open a connection, as we will see shortly.

Acknowledgment Number As we discussed previously, communication in TCP is full
duplex; when a connection is established, both parties can send and receive data at the
same time. Each party numbers the bytes, usually with a different starting byte number.
The sequence number in each direction shows the number of the first byte carried by
the segment. Each party also uses an acknowledgment number to confirm the bytes it has
received. However, the acknowledgment number defines the number of the next byte
that the party expects to receive. In addition, the acknowledgment number is cumula­
tive, which means that the party takes the number of the last byte that it has received,
safe and sound, adds I to it, and announces this sum as the acknowledgment number.
The term cumulative here means that if a party uses 5643 as an acknowledgment number,
it has received all bytes from the beginning up to 5642. Note that this does not mean
that the party has received 5642 bytes because the first byte number does not have to start
from O.

The value of the acknowledgment field in a segment defines
the number of the next byte a party expects to receive.

The acknowledgment number is cumulative.

Flow Control

TCP, unlike UDP, provides flow control. The receiver of the data controls the amount of
data that are to be sent by the sender. This is done to prevent the receiver from being over­
whelmed with data. The numbering system allows TCP to use a byte-oriented flow control.

Error Control

To provide reliable service, TCP implements an error control mechanism. Although
error control considers a segment as the unit of data for error detection (loss or corrupted
segments), error control is byte-oriented, as we will see later.

Congestion Control

TCP, unlike UDP, takes into account congestion in the network. The amount of data sent
by a sender is not only controlled by the receiver (flow control), but is also detennined
by the level of congestion in the network.
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Segment

Before we discuss TCP in greater detail, let us discuss the TCP packets themselves. A
packet in TCP is called a segment.

Format

The format of a segment is shown in Figure 23.16.

Figure 23.16 TCP segment format

Sequence number
32 bits

Acknowledgment number
32 bits

HLEN
4 bits

Options and Padding

Window size
16 bits

Urgent pointer
16 bits

The segment consists of a 20- to 60-byte header, followed by data from the appli­
cation program. The header is 20 bytes if there are no options and up to 60 bytes if it
contains options. We will discuss some of the header fields in this section. The meaning
and purpose of these will become clearer as we proceed through the chapter.

o Source port address. This is a 16-bit field that defines the port number of the
application program in the host that is sending the segment. This serves the same
purpose as the source port address in the UDP header.

o Destination port address. This is a 16-bit field that defines the port number of the
application program in the host that is receiving the segment. This serves the same
purpose as the destination port address in the UDP header.

o Sequence number. This 32-bit field defines the number assigned to the first byte of
data contained in this segment. As we said before, TCP is a stream transport protocol.
To ensure connectivity, each byte to be transmitted is numbered. The sequence number
tells the destination which byte in this sequence comprises the first byte in the seg­
ment. During connection establishment, each party uses a random number generator to
create an initial sequence number (ISN), which is usually different in each direction.

o Acknowledgment number. This 32-bit field defines the byte number that the
receiver of the segment is expecting to receive from the other party. If the receiver
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of the segment has successfully received byte number x from the other party, it
defines x + I as the acknowledgment number. Acknowledgment and data can be
piggybacked together.

D Header length. This 4-bit field indicates the number of 4-byte words in the TCP
header. The length of the header can be between 20 and 60 bytes. Therefore, the
value of this field can be between 5 (5 x 4 =20) and 15 (15 x 4 =60).

D Reserved. This is a 6-bit field reserved for future use.

D Control. This field defines 6 different control bits or flags as shown in Figure 23.17.
One or more of these bits can be set at a time.

Figure 23.17 Control field
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These bits enable flow control, connection establishment and termination, connection
abortion, and the mode of data transfer in TCP. A brief description of each bit is shown in
Table 23.3. We will discuss them further when we study the detailed operation of TCP
later in the chapter.

Table 23.3 Description offlags in the control field

Flag Description

URG The value of the urgent pointer field is valid.

ACK The value of the acknowledgment field is valid.

PSH Push the data.

RST Reset the connection.

SYN Synchronize sequence numbers during connection.

FIN Terminate the connection.

D Window size. This field defines the size of the window, in bytes, that the other
party must maintain. Note that the length of this field is 16 bits, which means that
the maximum size of the window is 65,535 bytes. This value is normally referred
to as the receiving window (rwnd) and is determined by the receiver. The sender
must obey the dictation of the receiver in this case.

D Checksum. This 16-bit field contains the checksum. The calculation of the check­
sum for TCP follows the same procedure as the one described for UDP. However, the
inclusion of the checksum in the UDP datagram is optional, whereas the inclusion
of the checksum for TCP is mandatory. The same pseudoheader, serving the same
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purpose, is added to the segment. For the TCP pseudoheader, the value for the pro­
tocol field is 6.

o Urgent pointer. This l6-bit field, which is valid only if the urgent flag is set, is
used when the segment contains urgent data. It defines the number that must be
added to the sequence number to obtain the number of the last urgent byte in the
data section of the segment. This will be discussed later in this chapter.

o Options. There can be up to 40 bytes of optional information in the TCP header.
We will not discuss these options here; please refer to the reference list for more
information.

A TCP Connection
TCP is connection-oriented. A connection-oriented transport protocol establishes a
virtual path between the source and destination. All the segments belonging to a mes­
sage are then sent over this virtual path. Using a single virtual pathway for the entire
message facilitates the acknowledgment process as well as retransmission of damaged
or lost frames. You may wonder how TCP, which uses the services of IP, a connection­
less protocol, can be connection-oriented. The point is that a TCP connection is virtual,
not physical. TCP operates at a higher level. TCP uses the services of IP to deliver indi­
vidual segments to the receiver, but it controls the connection itself. If a segment is lost
or corrupted, it is retransmitted. Unlike TCP, IP is unaware of this retransmission. If a
segment arrives out of order, TCP holds it until the missing segments arrive; IP is
unaware of this reordering.

In TCP, connection-oriented transmission requires three phases: connection estab­
lishment, data transfer, and connection termination.

Connection Establishment

TCP transmits data in full-duplex mode. When two TCPs in two machines are con­
nected, they are able to send segments to each other simultaneously. This implies that
each party must initialize communication and get approval from the other party before
any data are transferred.

Three-Way Handshaking The connection establishment in TCP is called three­
way handshaking. In our example, an application program, called the client, wants to
make a connection with another application program, called the server, using TCP as
the transport layer protocol.

The process starts with the server. The server program tells its TCP that it is ready
to accept a connection. This is called a request for a passive open. Although the server
TCP is ready to accept any connection from any machine in the world, it cannot make
the connection itself.

The client program issues a request for an active open. A client that wishes to con­
nect to an open server tells its TCP that it needs to be connected to that particular
server. TCP can now start the three-way handshaking process as shown in Figure 23.18.
To show the process, we use two time lines: one at each site. Each segment has values
for all its header fields and perhaps for some of its option fields, too. However, we show
only the few fields necessary to understand each phase. We show the sequence number,
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Figure 23.18 Connection establishment using three-way handshaking

Client
r

- - A: ACK flag
S: SYN flag

Server-
Active

open

Time

Passive

gr-~-~~~------l open

Time

the acknowledgment number, the control flags (only those that are set), and the window
size, if not empty. The three steps in this phase are as follows.

1. The client sends the first segment, a SYN segment, in which only the SYN flag is set.
This segment is for synchronization of sequence numbers. It consumes one sequence
number. When the data transfer starts, the sequence number is incremented by 1. We
can say that the SYN segment carries no real data, but we can think of it as containing
1 imaginary byte.

A SYN segment cannot carry data, but it consumes one sequence number.

2. The server sends the second segment, a SYN + ACK segment, with 2 flag bits set:
SYN and ACK. This segment has a dual purpose. It is a SYN segment for commu­
nication in the other direction and serves as the acknowledgment for the SYN
segment. It consumes one sequence number.

A SYN + ACK segment cannot carry data,
but does consume one sequence number.

3. The client sends the third segment. This is just an ACK segment. It acknowledges
the receipt of the second segment with the ACK flag and acknowledgment number
field. Note that the sequence number in this segment is the same as the one in the
SYN segment; the ACK segment does not consume any sequence numbers.

An ACK segment, if carrying no data, consumes no sequence number.
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Simultaneous Open A rare situation, called a simultaneous open, may occur when
both processes issue an active open. In this case, both TCPs transmit a SYN + ACK
segment to each other, and one single connection is established between them.

SYN Flooding Attack The connection establishment procedure in TCP is susceptible
to a serious security problem called the SYN flooding attack. This happens when a mali­
cious attacker sends a large number of SYN segments to a server, pretending that each
of them is corning from a different client by faking the source IP addresses in the data­
grams. The server, assuming that the clients are issuing an active open, allocates the
necessary resources, such as creating communication tables and setting timers. The
TCP server then sends the SYN +ACK segments to the fake clients, which are lost. Dur­
ing this time, however, a lot of resources are occupied without being used. If, during this
short time, the number of SYN segments is large, the server eventually runs out of
resources and may crash. This SYN flooding attack belongs to a type of security attack
known as a denial-of-service attack, in which an attacker monopolizes a system with
so many service requests that the system collapses and denies service to every request.

Some implementations of TCP have strategies to alleviate the effects of a SYN
attack. Some have imposed a limit on connection requests during a specified period of
time. Others filter out datagrams coming from unwanted source addresses. One recent
strategy is to postpone resource allocation until the entire connection is set up, using
what is called a cookie. SCTP, the new transport layer protocol that we discuss in the
next section, uses this strategy.

Data Transfer

After connection is established, bidirectional data transfer can take place. The client
and server can both send data and acknowledgments. We will study the rules of
acknowledgment later in the chapter; for the moment, it is enough to know that data
traveling in the same direction as an acknowledgment are carried on the same seg­
ment. The acknowledgment is piggybacked with the data. Figure 23.19 shows an example.
In this example, after connection is established (not shown in the figure), the client
sends 2000 bytes of data in two segments. The server then sends 2000 bytes in one seg­
ment. The client sends one more segment. The first three segments carry both data and
acknowledgment, but the last segment carries only an acknowledgment because there
are no more data to be sent. Note the values of the sequence and acknowledgment
numbers. The data segments sent by the client have the PSH (push) flag set so that the
server TCP knows to deliver data to the server process as soon as they are received.
We discuss the use of this flag in greater detail later. The segment from the server, on
the other hand, does not set the push flag. Most TCP implementations have the option
to set or not set this flag.

Pushing Data We saw that the sending TCP uses a buffer to store the stream of data
coming from the sending application program. The sending TCP can select the segment
size. The receiving TCP also buffers the data when they arrive and delivers them to the
application program when the application program is ready or when it is convenient for
the receiving TCP. This type of flexibility increases the efficiency of TCP.

However, on occasion the application program has no need for this flexibility_ For
example, consider an application program that communicates interactively with another
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Figure 23.19 Data transfer
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application program on the other end. The application program on one site wants to
send a keystroke to the application at the other site and receive an immediate response.
Delayed transmission and delayed delivery of data may not be acceptable by the applica­
tion program.

TCP can handle such a situation. The application program at the sending site can
request a push operation. This means that the sending TCP must not wait for the window
to be filled. It must create a segment and send it immediately. The sending TCP must
also set the push bit (PSH) to let the receiving TCP know that the segment includes data
that must be delivered to the receiving application program as soon as possible and not
to wait for more data to come.

Although the push operation can be requested by the application program, most
current implementations ignore such requests. TCP can choose whether or not to use
this feature.

Urgent Data TCP is a stream-oriented protocol. This means that the data are presented
from the application program to TCP as a stream of bytes. Each byte of data has a posi­
tion in the stream. However, on occasion an application program needs to send urgent
bytes. This means that the sending application program wants a piece of data to be read
out of order by the receiving application program. As an example, suppose that the sending
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application program is sending data to be processed by the receiving application
program. When the result of processing comes back, the sending application program
finds that everything is wrong. It wants to abort the process, but it has already sent a huge
amount of data. If it issues an abort command (control + C), these two characters will be
stored at the end of the receiving TCP buffer. It will be delivered to the receiving appli­
cation program after all the data have been processed.

The solution is to send a segment with the URG bit set. The sending application
program tells the sending TCP that the piece of data is urgent. The sending TCP creates
a segment and inserts the urgent data at the beginning of the segment. The rest of the
segment can contain normal data from the buffer. The urgent pointer field in the header
defines the end of the urgent data and the start of normal data.

When the receiving TCP receives a segment with the URG bit set, it extracts the
urgent data from the segment, using the value of the urgent pointer, and delivers them,
out of order, to the receiving application program.

Connection Termination

Any of the two parties involved in exchanging data (client or server) can close the connec­
tion, although it is usually initiated by the client. Most implementations today allow two
options for connection termination: three-way handshaking and four-way handshaking
with a half-close option.

Three-Way Handshaking Most implementations today allow three-way handshaking
for connection termination as shown in Figure 23.20.

1. In a normal situation, the client TCP, after receiving a close command from the
client process, sends the first segment, a FIN segment in which the FIN flag is set.
Note that a FIN segment can include the last chunk of data sent by the client, or it

Figure 23.20 Connection termination using three-way handshaking
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can be just a control segment as shown in Figure 23.20. If it is only a control seg­
ment, it consumes only one sequence number.

The FIN segment consumes one sequence number ifit does not carry data.

2. The server TCP, after receiving the FIN segment, informs its process of the situa­
tion and sends the second segment, a FIN + ACK segment, to confirm the receipt
of the FIN segment from the client and at the same time to announce the closing of
the connection in the other direction. This segment can also contain the last chunk
of data from the server. If it does not carry data, it consumes only one sequence
number.

The FIN +ACK segment consumes one sequence
number if it does not carry data.

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt of
the FIN segment from the TCP server. This segment contains the acknowledgment
number, which is 1 plus the sequence number received in the FIN segment from
the server. This segment cannot carry data and consumes no sequence numbers.

Half-Close In TCP, one end can stop sending data while still receiving data. This is
called a half-close. Although either end can issue a half-close, it is normally initiated by
the client. It can occur when the server needs all the data before processing can begin. A
good example is sorting. When the client sends data to the server to be sorted, the server
needs to receive all the data before sorting can start. This means the client, after sending
all the data, can close the connection in the outbound direction. However, the inbound
direction must remain open to receive the sorted data. The server, after receiving the
data, still needs time for sorting; its outbound direction must remain open.

Figure 23.21 shows an example of a half-close. The client half-closes the connection
by sending a FIN segment. The server accepts the half-close by sending the ACK segment.
The data transfer from the client to the server stops. The server, however, can still send
data. When the server has sent all the processed data, it sends a FIN segment, which is
acknowledged by an ACK from the client.

After half-closing of the connection, data can travel from the server to the client
and acknowledgments can travel from the client to the server. The client cannot send any
more data to the server. Note the sequence numbers we have used. The second segment
(ACK) consumes no sequence number. Although the client has received sequence number
y - 1 and is expecting y, the server sequence number is still y - 1. When the connection
finally closes, the sequence number of the last ACK segment is still x, because no
sequence numbers are consumed during data transfer in that direction.

Flow Control

TCP uses a sliding window, as discussed in Chapter 11, to handle flow control. The
sliding window protocol used by TCP, however, is something between the Go-Back-N
and Selective Repeat sliding window. The sliding window protocol in TCP looks like
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Figure 23.21 Half-close
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the Go-Back-N protocol because it does not use NAKs; it looks like Selective Repeat
because the receiver holds the out-of-order segments until the missing ones arrive. There
are two big differences between this sliding window and the one we used at the data
link layer. First, the sliding window ofTCP is byte-oriented; the one we discussed in the
data link layer is frame-oriented. Second, the TCP's sliding window is of variable size;
the one we discussed in the data link layer was of fixed size.

Figure 23.22 shows the sliding window in TCP. The window spans a portion of the
buffer containing bytes received from the process. The bytes inside the window are the
bytes that can be in transit; they can be sent without worrying about acknowledgment.
The imaginary window has two walls: one left and one right.

The window is opened, closed, or shrunk. These three activities, as we will see, are
in the control of the receiver (and depend on congestion in the network), not the sender.
The sender must obey the commands of the receiver in this matter.

Opening a window means moving the right wall to the right. This allows more new
bytes in the buffer that are eligible for sending. Closing the window means moving the
left wall to the right. This means that some bytes have been acknowledged and the sender
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Figure 23.22 Sliding window
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need not worry about them anymore. Sluinking the window means moving the right wall
to the left. This is strongly discouraged and not allowed in some implementations
because it means revoking the eligibility of some bytes for sending. This is a problem if
the sender has already sent these bytes. Note that the left wall cannot move to the left
because this would revoke some of the previously sent acknowledgments.

A sliding window is used to make transmission more efficient as weD as
to control the flow of data so that the destination does not become
overwhelmed with data. TCP sliding windows are byte-oriented.

The size of the window at one end is determined by the lesser of two values: receiver
window (rwnd) or congestion window (cwnd). The receiver window is the value adver­
tised by the opposite end in a segment containing acknowledgment. It is the number of
bytes the other end can accept before its buffer overflows and data are discarded. The
congestion window is a value determined by the network to avoid congestion. We will
discuss congestion later in the chapter.

Example 23.4

What is the value of the receiver window (rwnd) for host A if the receiver, host B, has a buffer
size of 5000 bytes and 1000 bytes of received and unprocessed data?

Solution
The value of rwnd =5000 - 1000 = 4000. Host B can receive only 4000 bytes of data before
overflowing its buffer. Host B advertises this value in its next segment to A.

Example 23.5

What is the size of the window for host A if the value of rwnd is 3000 bytes and the value of cwnd
is 3500 bytes?

Solution
The size of the window is the smaller of rwnd and cwnd, which is 3000 bytes.

Example 23.6

Figure 23.23 shows an unrealistic example of a sliding window. The sender has sent bytes up to
202. We assume that cwnd is 20 (in reality this value is thousands of bytes). The receiver has sent
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Figure 23.23 Example 23.6
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an acknowledgment number of 200 with an rwnd of 9 bytes (in reality this value is thousands of
bytes). The size of the sender window is the minimum of rwnd and cwnd, or 9 bytes. Bytes 200 to
202 are sent, but not acknowledged. Bytes 203 to 208 can be sent without worrying about
acknowledgment. Bytes 209 and above cannot be sent.

Some points about TCP sliding windows:

o The size of the window is the lesser of rwnd and cwnd.

o The source does not have to send a full window's worth of data.

o The window can be opened or closed by the receiver, but should not be shrunk.

o The destination can send an acknowledgment at any time as long as it does not result in
a shrinking window.

o The receiver can temporarily shut down the window; the sender, however, can always
send a segment of 1 byte after the window is shut down.

Error Control
TCP is a reliable transport layer protocol. This means that an application program that
delivers a stream of data to TCP relies on TCP to deliver the entire stream to the appli­
cation program on the other end in order, without error, and without any part lost or
duplicated.

TCP provides reliability using error control. Error control includes mechanisms for
detecting corrupted segments, lost segments, out-of-order segments, and duplicated
segments. Error control also includes a mechanism for correcting errors after they are
detected. Error detection and correction in TCP is achieved through the use of three
simple tools: checksum, acknowledgment, and time-out.

Checksum

Each segment includes a checksum field which is used to check for a corrupted segment.
If the segment is corrupted, it is discarded by the destination TCP and is considered
as lost. TCP uses a 16-bit checksum that is mandatory in every segment. We will see, in
Chapter 24, that the 16-bit checksum is considered inadequate for the new transport
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layer, SCTP. However, it cannot be changed for TCP because this would involve recon­
figuration of the entire header format.

Acknowledgment

TCP uses acknowledgments to confirm the receipt of data segments. Control segments
that carry no data but consume a sequence number are also acknowledged. ACK segments
are never acknowledged.

ACK segments do not consume sequence numbers and are not acknowledged.

Retransmission

The heart of the error control mechanism is the retransmission of segments. When a
segment is corrupted, lost, or delayed, it is retransmitted. In modern implementations, a
segment is retransmitted on two occasions: when a retransmission timer expires or
when the sender receives three duplicate ACKs.

In modern implementations, a retransmission occurs if the retransmission
timer expires or three duplicate ACK segments have arrived.

Note that no retransmission occurs for segments that do not consume sequence
numbers. In particular, there is no transmission for an ACK segment.

No retransmission timer is set for an ACK segment.

Retransmission After RTO A recent implementation of TCP maintains one retrans­
mission time-out (RTO) timer for all outstanding (sent, but not acknowledged) seg­
ments. When the timer matures, the earliest outstanding segment is retransmitted even
though lack of a received ACK can be due to a delayed segment, a delayed ACK, or a lost
acknowledgment. Note that no time-out timer is set for a segment that carries only an
acknowledgment, which means that no such segment is resent. The value of RTO is
dynamic in TCP and is updated based on the round-trip time (RTT) of segments. An
RTI is the time needed for a segment to reach a destination and for an acknowledgment
to be received. It uses a back-off strategy similar to one discussed in Chapter 12.

Retransmission After Three Duplicate ACK Segments The previous rule about
retransmission of a segment is sufficient if the value of RTO is not very large. Sometimes,
however, one segment is lost and the receiver receives so many out-of-order segments
that they cannot be saved (limited buffer size). To alleviate this situation, most imple­
mentations today follow the three-duplicate-ACKs rule and retransmit the missing
segment immediately. This feature is referred to as fast retransmission, which we will
see in an example shortly.

Out-oj-Order Segments

When a segment is delayed, lost, or discarded, the segments following that segment arrive
out of order. Originally, TCP was designed to discard all out-of-order segments, resulting
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in the retransmission of the missing segment and the following segments. Most imple­
mentations today do not discard the out-of-order segments. They store them temporarily
and flag them as out-of-order segments until the missing segment arrives. Note, however,
that the out-of-order segments are not delivered to the process. TCP guarantees that data
are delivered to the process in order.

Data may arrive out of order and be temporarily stored by the receiving TCP,
but yep guarantees that no out-of-order segment is delivered to the process.

Some Scenarios

In this section we give some examples of scenarios that occur during the operation of
TCP. In these scenarios, we show a segment by a rectangle. If the segment carries data,
we show the range of byte numbers and the value of the acknowledgment field. If it
carries only an acknowledgment, we show only the acknowledgment number in a
smaller box.

Normal Operation The first scenario shows bidirectional data transfer between two
systems, as in Figure 23.24. The client TCP sends one segment; the server TCP sends
three. The figure shows which rule applies to each acknowledgment. There are data to
be sent, so the segment displays the next byte expected. When the client receives the
first segment from the server, it does not have any more data to send; it sends only an

Figure 23.24 Nonnaloperation
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ACK segment. However, the acknowledgment needs to be delayed for 500 ms to see if
any more segments arrive. When the timer matures, it triggers an acknowledgment.
This is so because the client has no knowledge if other segments are coming; it cannot
delay the acknowledgment forever. When the next segment arrives, another acknowl­
edgment timer is set. However, before it matures, the third segment arrives. The arrival
of the third segment triggers another acknowledgment.

Lost Segment In this scenario, we show what happens when a segment is lost or cor­
rupted. A lost segment and a corrupted segment are treated the same way by the
receiver. A lost segment is discarded somewhere in the network; a corrupted segment is
discarded by the receiver itself. Both are considered lost. Figure 23.25 shows a situa­
tion in which a segment is lost and discarded by some router in the network, perhaps
due to congestion.

Figure 23.25 Lost segment
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We are assuming that data transfer is unidirectional: one site is sending, the other is
receiving. In our scenario, the sender sends segments 1 and 2, which are acknowledged
immediately by an ACK. Segment 3, however, is lost. The receiver receives segment 4,
which is out of order. The receiver stores the data in the segment in its buffer but leaves
a gap to indicate that there is no continuity in the data. The receiver immediately sends
an acknowledgment to the sender, displaying the next byte it expects. Note that the
receiver stores bytes 801 to 900, but never delivers these bytes to the application until
the gap is filled.

The receiver TCP delivers only ordered data to the process.
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We have shown the timer for the earliest outstanding segment. The timer for this
definitely runs out because the receiver never sends an acknowledgment for lost or out­
of-order segments. When the timer matures, the sending TCP resends segment 3, which
arrives this time and is acknowledged properly. Note that the value in the second and
third acknowledgments differs according to the corresponding rule.

Fast Retransmission In this scenario, we want to show the idea of fast retransmis­
sion. Our scenario is the same as the second except that the RTO has a higher value (see
Figure 23.26).

Figure 23.26 Fast retransmission
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When the receiver receives the fourth, fifth, and sixth segments, it triggers an
acknowledgment. The sender receives four acknowledgments with the same value (three
duplicates). Although the timer for segment 3 has not matured yet, the fast transmission
requires that segment 3, the segment that is expected by all these acknowledgments, be
resent immediately.

Note that only one segment is retransmitted although four segments are not
acknowledged. When the sender receives the retransmitted ACK, it knows that the four
segments are safe and sound because acknowledgment is cumulative.

Congestion Control
We discuss congestion control of TCP in Chapter 24.
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23.4 SCTP
Stream Control Transmission Protocol (SCTP) is a new reliable, message-oriented
transport layer protocol. SCTP, however, is mostly designed for Internet applications
that have recently been introduced. These new applications, such as IUA (ISDN over
IP), M2UA and M3UA (telephony signaling), H.248 (media gateway control), H.323
(IP telephony), and SIP (IP telephony), need a more sophisticated service than TCP can
provide. SCTP provides this enhanced performance and reliability. We briefly compare
UDP, TCP, and SCTP:

o UDP is a message-oriented protocol. A process delivers a message to UDP, which
is encapsulated in a user datagram and sent over the network. UDP conserves the
message boundaries; each message is independent of any other message. This is a
desirable feature when we are dealing with applications such as IP telephony and
transmission of real-time data, as we will see later in the text. However, UDP is
unreliable; the sender cannot know the destiny of messages sent. A message can be
lost, duplicated, or received out of order. UDP also lacks some other features, such
as congestion control and flow control, needed for a friendly transport layer protocol.

o TCP is a byte-oriented protocol. It receives a message or messages from a pro­
cess, stores them as a stream of bytes, and sends them in segments. There is no
preservation of the message boundaries. However, TCP is a reliable protocol.
The duplicate segments are detected, the lost segments are resent, and the bytes
are delivered to the end process in order. TCP also has congestion control and
flow control mechanisms.

o SCTP combines the best features of UDP and TCP. SCTP is a reliable message­
oriented protocol. It preserves the message boundaries and at the same time detects
lost data, duplicate data, and out-of-order data. It also has congestion control and
flow control mechanisms. Later we will see that SCTP has other innovative features
unavailable in UDP and TCP.

SCTP is a message-oriented, reliable protocol that
combines the best features of UDP and TCP.

SCTP Services

Before we discuss the operation of SCTP, let us explain the services offered by SCTP to
the application layer processes.

Process-to-Process Communication

SCTP uses all well-known ports in the TCP space. Table 23.4 lists some extra port
numbers used by SCTP.

Multiple Streams

We learned in the previous section that TCP is a stream-oriented protocol. Each con­
nection between a TCP client and a TCP server involves one single stream. The problem
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Table 23.4 Some SCTP applications

Protocol Port Number Description

IVA 9990 ISDN overIP

M2UA 2904 SS7 telephony signaling

M3UA 2905 SS7 telephony signaling

H.248 2945 Media gateway control

H.323 1718,1719, 1720, 11720 IP telephony

SIP 5060 IP telephony

with this approach is that a loss at any point in the stream blocks the delivery of the rest
of the data. This can be acceptable when we are transferring text; it is not when we are
sending real-time data such as audio or video. SCTP allows multistream service in
each connection, which is called association in SCTP terminology. If one of the streams
is blocked, the other streams can still deliver their data.The idea is similar to multiple
lanes on a highway. Each lane can be used for a different type of traffic. For example,
one lane can be used for regular traffic, another for car pools. If the traffic is blocked for
regular vehicles, car pool vehicles can still reach their destinations. Figure 23.27 shows
the idea of multiple-stream delivery.

Figure 23.27 Multiple-stream concept
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An association in SCTP can involve multiple streams.

Multihoming

A TCP connection involves one source and one destination IP address. This means that
even if the sender or receiver is a multihomed host (connected to more than one physi­
cal address with multiple IP addresses), only one of these IP addresses per end can be
utilized during the connection. An SCTP association, on the other hand, supports
multihoming service. The sending and receiving host can define multiple IP addresses
in each end for an association. In this fault-tolerant approach, when one path fails,
another interface can be used for data delivery without interruption. This fault-tolerant
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feature is very helpful when we are sending and receiving a real-time payload such as
Internet telephony. Figure 23.28 shows the idea of multihoming.

Figure 23.28 Multihoming concept
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In Figure 23.28, the client is connected to two local networks with two IP addresses.
The server is also connected to two networks with two IP addresses. The client and the
server can make an association, using four different pairs of IP addresses. However, note
that in the current implementations of SCTP, only one pair of IF addresses can be chosen
for normal communication; the alternative is used if the main choice fails. In other
words, at present, SCTP does not allow load sharing between different paths.

SCTP association allows multiple IP addresses for each end.

Full-Duplex Communication

Like TCP, SCTP offers full-duplex service, in which data can flow in both directions at
the same time. Each SCTP then has a sending and receiving buffer, and packets are sent
in both directions.

Connection-Oriented Service

Like TCP, SCTP is a connection-oriented protocol. However, in SCTP, a connection is
called an association. When a process at site A wants to send and receive data from
another process at site B, the following occurs:

1. The two SCTPs establish an association between each other.

2. Data are exchanged in both directions.

3. The association is terminated.

Reliable Service

SCTP, like TCP, is a reliable transport protocol. It uses an acknowledgment mechanism
to check the safe and sound arrival of data. We will discuss this feature further in the
section on error control.

SCTP Features

Let us first discuss the general features of SCTP and then compare them with those ofTCP.
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Transmission Sequence Number

The unit of data in TCP is a byte. Data transfer in TCP is controlled by numbering bytes
by using a sequence number. On the other hand, the unit of data in SCTP is a DATA chunk
which mayor may not have a one-to-one relationship with the message coming from the
process because of fragmentation (discussed later), Data transfer in SCTP is controlled
by numbering the data chunks. SCTP uses a transmission sequence number (TSN) to
number the data chunks. In other words, the TSN in SCTP plays the analogous role to
the sequence number in TCP. TSNs are 32 bits long and randomly initialized between 0
and 232 - 1. Each data chunk must carry the corresponding TSN in its header.

In SCTP, a data chunk is numbered using a TSN.

Stream Identifier

In TCP, there is only one stream in each connection. In SCTP, there may be several
streams in each association. Each stream in SCTP needs to be identified by using a
stream identifier (SI). Each data chunk must carry the SI in its header so that when it
arrives at the destination, it can be properly placed in its stream. The 51 is a 16-bit number
starting from O.

To distinguish between different streams, SCTP uses an SI.

Stream Sequence Number

When a data chunk arrives at the destination SCTP, it is delivered to the appropriate
stream and in the proper order. This means that, in addition to an SI, SCTP defines each
data chunk in each stream with a stream sequence number (SSN).

To distinguish between different data chunks belonging
to the same stream, SCTP uses SSNs.

Packets

In TCP, a segment carries data and control information. Data are carried as a collection
of bytes; control information is defined by six control flags in the header. The design of
SCTP is totally different: data are carried as data chunks, control information is carried
as control chunks. Several control chunks and data chunks can be packed together in a
packet. A packet in SCTP plays the same role as a segment in TCP. Figure 23.29 compares
a segment in TCP and a packet in SCTP. Let us briefly list the differences between an
SCTP packet and a TCP segment:

TCP has segments; SCTP has packets.

1. The control information in TCP is part of the header; the control information in
SCTP is included in the control chunks. There are several types of control chunks;
each is used for a different purpose.
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Figure 23.29 Comparison between a TCP segment and an SCTP packet
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2. The data in a TCP segment treated as one entity; an SCTP packet can carry several
data chunks; each can belong to a different stream.

3. The options section, which can be part of a TCP segment, does not exist in an
SCTP packet. Options in SCTP are handled by defining new chunk types.

4. The mandatory part of the TCP header is 20 bytes, while the general header in
SCTP is only 12 bytes. The SCTP header is shorter due to the following:

a. An SCTP sequence number (TSN) belongs to each data chunk and hence is
located in the chunk's header.

b. The acknowledgment number and window size are part of each control chunk.

c. There is no need for a header length field (shown as HL in the TCP segment)
because there are no options to make the length of the header variable; the
SCTP header length is fixed (12 bytes).

d. There is no need for an urgent pointer in SCTP.

5. The checksum in TCP is 16 bits; in SCTP, it is 32 bits.

6. The verification tag in SCTP is an association identifier, which does not exist in
TCP. In TCP, the combination of IP and port addresses defines a connection; in
SCTP we may have multihorning using different IP addresses. A unique verification
tag is needed to define each association.

7. TCP includes one sequence number in the header, which defines the number of the
first byte in the data section. An SCTP packet can include several different data
chunks. TSNs, SIs, and SSNs define each data chunk.

8. Some segments in TCP that carry control information (such as SYN and FIN) need
to consume one sequence number; control chunks in SCTP never use a TSN, SI, or
SSN. These three identifiers belong only to data chunks, not to the whole packet.

In SCTP, control information and data information are carried in separate chunks.

In SCTP, we have data chunks, streams, and packets. An association may send many
packets, a packet may contain several chunks, and chunks may belong to different
streams. To make the definitions of these terms clear, let us suppose that process A
needs to send 11 messages to process B in three streams. The first four messages are in
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the first stream, the second three messages are in the second stream, and the last four
messages are in the third stream.

Although a message, if long, can be carried by several data chunks, we assume that
each message fits into one data chunk. Therefore, we have 11 data chunks in three streams.

The application process delivers 11 messages to SCTP, where each message is ear­
marked for the appropriate stream. Although the process could deliver one message from
the first stream and then another from the second, we assume that it delivers all messages
belonging to the first stream first, all messages belonging to the second stream next, and
finally, all messages belonging to the last stream.

We also assume that the network allows only three data chunks per packet, which
means that we need. four packets as shown in Figure 23.30. Data chunks in stream 0 are
carried in the first packet and part of the second packet; those in stream 1 are carried in
the second and third packets; those in stream 2 are carried in the third and fourth packets.

Figure 23.30 Packet, data chunks, and streams
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Flow of packets from sender to receiver

Note that each data chunk needs three identifiers: TSN, SI, and SSN. TSN is a
cumulative number and is used, as we will see later, for flow control and error control.
SI defines the stream to which the chunk belongs. SSN defines the chunk's order in a
particular stream. In our example, SSN starts from 0 for each stream.

Data chunks are identified by three items: TSN, SI, and SSN.
TSN is a cumulative number identifying the association;
SI defines the stream; SSN defines the chunk in a stream.

Acknowledgment Number

TCP acknowledgment numbers are byte-oriented and refer to the sequence numbers.
SCTP acknowledgment numbers are chunk-oriented. They refer to the TSN. A second
difference between TCP and SCTP acknowledgments is the control information. Recall
that this information is part of the segment header in TCP. To acknowledge segments
that carry only control information, TCP uses a sequence number and acknowledgment
number (for example, a SYN segment needs to be acknowledged by an ACK segment).
In SCTP, however, the control information is carried by control chunks, which do not
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need a TSN. These control chunks are acknowledged by another control chunk of the
appropriate type (some need no acknowledgment). For example, an INIT control chunk
is acknowledged by an INIT ACK chunk. There is no need for a sequence number or an
acknowledgment number.

In SCTP, acknowledgment numbers are used to acknowledge only data chunks;
control chunks are acknowledged by other control chunks ifnecessary.

Flow Control

Like TCP, SCTP implements flow control to avoid overwhelming the receiver. We will
discuss SCTP flow control later in the chapter.

Error Control

Like TCP, SCTP implements error control to provide reliability. TSN numbers and
acknowledgment numbers are used for error control. We will discuss error control later
in the chapter.

Congestion Control

Like TCP, SCTP implements congestion control to determine how many data chunks
can be injected into the network. We will discuss congestion control in Chapter 24.

Packet Format
In this section, we show the format of a packet and different types of chunks. Most of
the information presented in this section will become clear later; this section can be
skipped in the first reading or used only as a reference. An SCTP packet has a mandatory
general header and a set of blocks called chunks. There are two types of chunks: control
chunks and data chunks. A control chunk controls and maintains the association; a data
chunk carries user data. In a packet, the control chunks corne before the data chunks.
Figure 23.31 shows the general format of an SCTP packet.

Figure 23.31 SCTP packet format
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In an SCTP packet, control chunks come before data chunks.

General Header

The general header (packet header) defines the endpoints of each association to which
the packet belongs, guarantees that the packet belongs to a particular association, and
preserves the integrity of the contents of the packet including the header itself. The fonnat
of the general header is shown in Figure 23.32.

Figure 23.32 General header
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There are four fields in the general header:

o Source port address. This is a 16-bit field that defines the port number of the pro­
cess sending the packet.

o Destination port address. This is a 16-bit field that defines the port number of the
process receiving the packet.

o Verification tag. This is a number that matches a packet to an association. This
prevents a packet from a previous association from being mistaken as a packet in
this association. It serves as an identifier for the association; it is repeated in every
packet during the association. There is a separate verification used for each direction
in the association.

o Checksum. This 32-bit field contains a CRC-32 checksum. Note that the size of
the checksum is increased from 16 (in UDP, TCP, and IP) to 32 bits to allow the
use of the CRC-32 checksum.

Chunks

Control infonnation or user data are carried in chunks. The detailed fonnat of each chunk
is beyond the scope of this book. See [For06] for details. The first three fields are com­
mon to all chunks; the information field depends on the type of chunk. The important
point to remember is that SCTP requires the information section to be a multiple of
4 bytes; if not, padding bytes (eight as) are added at the end of the section. See Table 23.5
for a list of chunks and their descriptions.

An SCTP Association

SCTP, like TCP, is a connection-oriented protocol. However, a connection in SCTP is
called an association to emphasize multihoming.



744 CHAPTER 23 PROCESS-TO-PROCESS DEliVERY: UDp, TCp' AND SCTP

Table 23.5 Chunks

Type Chunk Description

0 DATA User data

1 INIT Sets up an association

2 INITACK Acknowledges INIT chunk

3 SACK Selective acknowledgment

4 HEARTBEAT Probes the peer for liveliness

5 HEARTBEAT ACK Acknowledges HEARTBEAT chunk

6 ABORT Aborts an association

7 SHUTDOWN Terminates an association

8 SHUTDOWN ACK Acknowledges SHUTDOWN chunk

9 ERROR Reports errors without shutting down

10 COOKIE ECHO Third packet in association establishment

11 COOKIEACK Acknowledges COOKIE ECHO chunk

14 SHUTDOWN COMPLETE Third packet in association termination

192 FORWARDTSN For adjusting cumulative TSN

A connection in SCTP is called an association.

Association Establishment

Association establishment in SCTP requires a four-way handshake. In this proce­
dure, a process, normally a client, wants to establish an association with another process,
normally a server, using SCTP as the transport layer protocol. Similar to TCP, the
SCTP server needs to be prepared to receive any association (passive open). Associa­
tion establishment, however, is initiated by the client (active open). SCTP association
establishment is shown in Figure 23.33. The steps, in a normal situation, are as follows:

1. The client sends the first packet, which contains an INIT chunk.

2. The server sends the second packet, which contains an INIT ACK chunk.

3. The client sends the third packet, which includes a COOKIE ECHO chunk. This
is a very simple chunk that echoes, without change, the cookie sent by the server.
SCTP allows the inclusion of data chunks in this packet.

4. The server sends the fourth packet, which includes the COOKIE ACK chunk that
acknowledges the receipt of the COOKIE ECHO chunk. SCTP allows the inclusion
of data chunks with this packet.

No other chunk is allowed in a packet carrying an INIT or INIT ACK chunk.
A COOKIE ECHO or a COOKIE ACK chunk can carry data chunks.

Cookie We discussed a SYN flooding attack in the previous section. With TCP, a
malicious attacker can flood a TCP server with a huge number of phony SYN segments
using different forged IP addresses. Each time the server receives a SYN segment, it
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Figure 23.33 Four-way handshaking
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sets up a state table and allocates other resources while waiting for the next segment to
arrive. After a while, however, the server may collapse due to the exhaustion of resources.

The designers of SCTP have a strategy to prevent this type of attack. The strategy
is to postpone the allocation of resources until the reception of the third packet, when
the IP address of the sender is verified. The information received in the first packet must
somehow be saved until the third packet arrives. But if the server saved the information,
that would require the allocation of resources (memory); this is the dilemma. The solution
is to pack the information and send it back to the client. This is called generating a
cookie. The cookie is sent with the second packet to the address received in the first
packet. There are two potential situations.

1. If the sender of the first packet is an attacker, the server never receives the third
packet; the cookie is lost and no resources are allocated. The only effort for the
server is "baking" the cookie.

2. If the sender of the first packet is an honest client that needs to make a connection,
it receives the second packet, with the cookie. It sends a packet (third in the series)
with the cookie, with no changes. The server receives the third packet and knows
that it has come from an honest client because the cookie that the sender has sent is
there. The server can now allocate resources.

The above strategy works if no entity can "eat" a cookie "baked" by the server. To guar­
antee this, the server creates a digest (see Chapter 30) from the information, using its
own secret key. The information and the digest together make the cookie, which is sent
to the client in the second packet. When the cookie is returned in the third packet, the
server calculates the digest from the information. If the digest matches the one that is
sent, the cookie has not been changed by any other entity.

Data Transfer

The whole purpose of an association is to transfer data between two ends. After the
association is established, bidirectional data transfer can take place. The client and the
server can both send data. Like TCP, SCTP supports piggybacking.
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There is a major difference, however, between data transfer in TCP and SCTP. TCP
receives messages from a process as a stream of bytes without recognizing any boundary
between them. The process may insert some boundaries for its peer use, but TCP treats
that mark as part of the text. In other words, TCP takes each message and appends it to
its buffer. A segment can carry parts of two different messages. The only ordering sys­
tem imposed by TCP is the byte numbers.

SCTP, on the other hand, recognizes and maintains boundaries. Each message com­
ing from the process is treated as one unit and inserted into a DATA chunk unless it is
fragmented (discussed later). In this sense, SCTP is like UDP, with one big advantage:
data chunks are related to each other.

A message received from a process becomes a DATA chunk, or chunks if frag­
mented, by adding a DATA chunk header to the message. Each DATA chunk formed by
a message or a fragment of a message has one TSN. We need to remember that only
DATA chunks use TSNs and only DATA chunks are acknowledged by SACK chunks.

In SCTP, only DATA chunks consume TSNs;
DATA chunks are the only chunks that are acknowledged.

Let us show a simple scenario in Figure 23.34. In this figure a client sends four
DATA chunks and receives two DATA chunks from the server. Later, we will discuss

Figure 23.34 Simple data transfer
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the use of flow and error control in SCTP. For the moment, we assume that everything
goes well in this scenario.

1. The client sends the first packet carrying two DATA chunks with TSNs 7105 and
7106.

2. The client sends the second packet carrying two DATA chunks with TSNs 7107
and 7108.

3. The third packet is from the server. It contains the SACK chunk needed to
acknowledge the receipt of DATA chunks from the client. Contrary to TCP,
SCTP acknowledges the last in-order TSN received, not the next expected. The
third packet also includes the first DATA chunk from the server with TSN 121.

4. After a while, the server sends another packet carrying the last DATA chunk with
TSN 122, but it does not include a SACK chunk in the packet because the last
DATA chunk received from the client was already acknowledged.

5. Finally, the client sends a packet that contains a SACK chunk acknowledging the
receipt of the last two DATA chunks from the server.

The acknowledgment in SCTP defines the cumulative TSN,
the TSN of the last data chunk received in order.

Multihoming Data Transfer We discussed the multihoming capability of SCTP, a
feature that distinguishes SCTP from UDP and TCP. Multihoming allows both ends to
define multiple IP addresses for communication. However, only one of these addresses
can be defined as the primary address; the rest are alternative addresses. The primary
address is defined during association establishment. The interesting point is that the pri­
mary address of an end is determined by the other end. In other words, a source defines
the primary address for a destination.

Multistream Delivery One interesting feature of SCTP is the distinction between
data transfer and data delivery. SCTP uses TSN numbers to handle data transfer, move­
ment of data chunks between the source and destination. The delivery of the data chunks
is controlled by SIs and SSNs. SCTP can support multiple streams, which means that
the sender process can define different streams and a message can belong to one of
these streams. Each stream is assigned a stream identifier (SI) which uniquely defines
that stream.

Fragmentation Another issue in data transfer is fragmentation. Although SCTP
shares this term with IP, fragmentation in IP and in SCTP belongs to different levels:
the former at the network layer, the latter at the transport layer.

SCTP preserves the boundaries of the message from process to process when
creating a DATA chunk from a message if the size of the message (when encapsu­
lated in an IP datagram) does not exceed the MTU of the path. The size of an IP
datagram carrying a message can be determined by adding the size of the message, in
bytes, to the four overheads: data chunk header, necessary SACK chunks, SCTP gen­
eral header, and IP header. If the total size exceeds the MTU, the message needs to be
fragmented.
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Association Termination

In SCTP, like TCP, either of the two parties involved in exchanging data (client or
server) can close the connection. However, unlike TCP, SCTP does not allow a half­
close situation. If one end closes the association, the other end must stop sending new
data. If any data are left over in the queue of the recipient of the termination request,
they are sent and the association is closed. Association termination uses three packets,
as shown in Figure 23.35. Note that although the figure shows the case in which termi­
nation is initiated by the client, it can also be initiated by the server. Note that there can
be several scenarios of association termination. We leave this discussion to the references
mentioned at the end of the chapter.

Figure 23.35 Association termination
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Flow control in SCTP is similar to that in TCP. In TCP, we need to deal with only one
unit of data, the byte. In SCTP, we need to handle two units of data, the byte and the
chunk. The values of rwnd and cwnd are expressed in bytes; the values of TSN and
acknowledgments are expressed in chunks. To show the concept, we make some unre­
alistic assumptions. We assume that there is never congestion in the network and that
the network is error-free. In other words, we assume that cwnd is infinite and no packet is
lost or delayed or arrives out of order. We also assume that data transfer is unidirectional.
We correct our unrealistic assumptions in later sections. Current SCTP implementa­
tions still use a byte-oriented window for flow control. We, however, show the buffer in
terms of chunks to make the concept easier to understand.

Receiver Site

The receiver has one buffer (queue) and three variables. The queue holds the received
data chunks that have not yet been read by the process. The first variable holds the last
TSN received, cumTSN. The second variable holds the available buffer size, winsize.
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The third variable holds the last accumulative acknowledgment, lastACK. Figure 23.36
shows the queue and variables at the receiver site.

Figure 23.36 Flow control, receiver site
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1. When the site receives a data chunk, it stores it at the end of the buffer (queue) and
subtracts the size of the chunk from winSize. The TSN number of the chunk is
stored in the cumTSN variable.

2. When the process reads a chunk, it removes it from the queue and adds the size of
the removed chunk to winSize (recycling).

3. When the receiver decides to send a SACK, it checks the value of lastAck; if it is
less than cumTSN, it sends a SACK with a cumulative TSN number equal to the
cumTSN. It also includes the value of winSize as the advertised window size.

Sender Site

The sender has one buffer (queue) and three variables: curTSN, rwnd, and inTransit, as
shown in Figure 23.37. We assume each chunk is 100 bytes long.

Figure 23.37 Flow control, sender site
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The buffer holds the chunks produced by the process that either have been sent or are
ready to be sent. The first variable, curTSN, refers to the next chunk to be sent. All chunks
in the queue with a TSN less than this value have been sent, but not acknowledged; they
are outstanding. The second variable, rwnd, holds the last value advertised by the receiver
(in bytes). The third variable, inTransit, holds the number of bytes in transit, bytes sent
but not yet acknowledged. The following is the procedure used by the sender.
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1. A chunk pointed to by curTSN can be sent if the size of the data is less than or
equal to the quantity rwnd - inTransit. After sending the chunk, the value of curTSN
is incremented by 1 and now points to the next chunk to be sent. The value of
inTransit is incremented by the size of the data in the transmitted chunk.

2. When a SACK is received, the chunks with a TSN less than or equal to the cumula­
tive TSN in the SACK are removed from the queue and discarded. The sender does
not have to worry about them any more. The value of inTransit is reduced by the
total size of the discarded chunks. The value of rwnd is updated with the value of
the advertised window in the SACK.

A Scenario

Let us give a simple scenario as shown in Figure 23.38. At the start the value of rwnd at
the sender site and the value of winSize at the receiver site are 2000 (advertised during
association establishment). Originally, there are four messages in the sender queue. The
sender sends one data chunk and adds the number of bytes (1000) to the inTransit vari­
able. After awhile, the sender checks the difference between the rwnd and inTransit,
which is 1000 bytes, so it can send another data chunk. Now the difference between the
two variables is 0 and no more data chunks can be sent. After awhile, a SACK arrives
that acknowledges data chunks 1 and 2. The two chunks are removed from the queue.
The value of inTransit is now O. The SACK, however, advertised a receiver window of
value 0, which makes the sender.update rwnd to O. Now the sender is blocked; it cannot
send any data chunks (with one exception explained later).

Figure 23.38 Flow control scenario
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At the receiver site, the queue is empty at the beginning. After the first data chunk
is received, there is one message in the queue and the value of cumTSN is 1. The value
of winSize is reduced to 1000 because the first message occupies 1000 bytes. After the
second data chunk is received, the value of window size is aand cumTSN is 2. Now, as
we will see, the receiver is required to send a SACK with cumulative TSN of 2. After
the first SACK was sent, the process reads the two messages, which means that there is
now room in the queue; the receiver advertises the situation with a SACK to allow the
sender to send more data chunks. The remaining events are not shown in the figure.

Error Control
SCTP, like TCP, is a reliable transport layer protocol. It uses a SACK chunk to report
the state of the receiver buffer to the sender. Each implementation uses a different set of
entities and timers for the receiver and sender sites. We use a very simple design to convey
the concept to the reader.

Receiver Site

In our design, the receiver stores all chunks that have arrived in its queue including the
out-of-order ones. However, it leaves spaces for any missing chunks. It discards dupli­
cate messages, but keeps track of them for reports to the sender. Figure 23.39 shows a
typical design for the receiver site and the state of the receiving queue at a particular
point in time.

Figure 23.39 Error control, receiver site
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The last acknowledgment sent was for data chunk 20. The available window size is
1000 bytes. Chunks 21 to 23 have been received in order. The first out-of-order block
contains chunks 26 to 28. The second out-of-order block contains chunks 31 to 34. A
variable holds the value of cumTSN. An array of variables keeps track of the beginning
and the end of each block that is out of order. An array of variables holds the duplicate
chunks received. Note that there is no need for storing duplicate chunks in the queue;
they will be discarded. The figure also shows the SACK chunk that will be sent to
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report the state of the receiver to the sender. The TSN numbers for out-of-order chunks
are relative (offsets) to the cumulative TSN.

Sender Site

At the sender site, our design demands two buffers (queues): a sending queue and a
retransmission queue. We also use the three variables rwnd, inTransit, and curTSN as
described in the previous section. Figure 23.40 shows a typical design.

Figure 23.40 Error control, sender site
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Sending queue

The sending queue holds chunks 23 to 40. The chunks 23 to 36 have already been
sent, but not acknowledged; they are outstanding chunks. The curTSN points to the
next chunk to be sent (37). We assume that each chunk is 100 bytes, which means that
1400 bytes of data (chunks 23 to 36) is in transit. The sender at this moment has a
retransmission queue. When a packet is sent, a retransmission timer starts for that
packet (all data chunks in that packet). Some implementations use one single timer for
the entire association, but we continue with our tradition of one timer for each packet for
simplification. When the retransmission timer for a packet expires, or four duplicate
SACKs arrive that declare a packet as missing (fast retransmission was discussed in
Chapter 12), the chunks in that packet are moved to the retransmission queue to be
resent. These chunks are considered lost, rather than outstanding. The chunks in the
retransmission queue have priority. In other words, the next time the sender sends a
chunk, it would be chunk 21 from the retransmission queue.

Sending Data Chunks

An end can send a data packet whenever there are data chunks in the sending queue
with a TSN greater than or equal to curTSN or if there are data chunks in the retransmis­
sion queue. The retransmission queue has priority. However, the total size of the data
chunk or chunks included in the packet must not exceed rwnd - inTransit, and the total
size of the frame must not exceed the MTU size as we discussed in previous sections.
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Retransmission To control a lost or discarded chunk, SCTP, like TCP, employs two
strategies: using retransmission timers and receiving four SACKs with the same missing
chunks.

Generating SACK Chunks

Another issue in error control is the generation of SACK chunks. The rules for generating
SCTP SACK chunks are similar to the rules used for acknowledgment with the TCP
ACK flag.

Congestion Control

SCTP, like TCP, is a transport layer protocol with packets subject to congestion in the net­
work. The SCTP designers have used the same strategies we will describe for congestion
control in Chapter 24 for TCP. SCTP has slow start (exponential increase), congestion
avoidance (additive increase), and congestion detection (multiplicative decrease) phases.
Like TCP, SCTP also uses fast retransmission and fast recovery.

23.5 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books and sites. The items in brackets [...] refer to the reference list at the end of the text.

Books
UDP is discussed in Chapter 11 of [For06], Chapter 11 of [Ste94], and Chapter 12 of
[ComOO]. TCP is discussed in Chapter 12 of [For06], Chapters 17 to 24 of [Ste94], and
Chapter 13 of [ComOO]. SCTP is discussed in Chapter 13 of [For06] and [SX02]. Both
UDP and TCP are discussed in Chapter 6 of [Tan03].

Sites
o www.ietf.org/rfc.html Information about RFCs

RFCs

A discussion of UDP can be found in RFC 768.
A discussion ofTCP can be found in the following RFCs:

675,700,721,761,793,879,896,1078,1106,1110,1144, 1145, 1146, 1263,1323,1337,
1379,1644,1693,1901,1905,2001,2018,2488,2580

A discussion of SCTP can be found in the following RFCs: .

2960,3257,3284,3285,3286,3309,3436,3554,3708,3758
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23.6 KEY TERMS
acknowledgment number

association

association establishment

association termination

byte-oriented

chunk

client

client/server paradigm

connection abortion

connection-oriented service

connectionless service

connectionless, unreliable transport
protocol

cookie

COOKIE ACK chunk

COOKIE ECHO chunk

cumulative TSN

DATA chunk

data transfer

denial-of-service attack

dynamic port

ephemeral port number

error control

fast retransmission

flow control

four-way handshaking

fragmentation

full-duplex service

general header

half-close

inbound stream

INIT ACK chunk

INIT chunk

initial sequence number (ISN)

message-oriented

multihoming service

multistream service

port number

primary address

process-to-process delivery

pseudoheader

queue

registered port

retransmission time-out (RTO)

retransmission timer

round-trip time (RTT)

SACK chunk

segment

sequence number

server

simultaneous close

simultaneous open

socket address

stream identifier (SI)

stream sequence number (SSN)

SYN flooding attack

three-way handshaking

Transmission Control Protocol (TCP)

transmission sequence number (TSN)

transport layer

user datagram

User Datagram Protocol (UDP)

verification tag

well-known port number

23.7 SUMMARY
o In the client/server paradigm, an application program on the local host, called the

client, needs services from an application program on the remote host,' called a
server.
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o Each application program has a port number that distinguishes it from other pro­
grams running at the same time on the same machine.

o The client program is assigned a random port number called an ephemeral port
number; the server program is assigned a universal port number called a well­
known port number.

o The ICANN has specified ranges for the different types of port numbers.

o The combination of the IP address and the port number, called the socket address,
defines a process and a host.

o UDP is a connectionless, unreliable transport layer protocol with no embedded
flow or error control mechanism except the checksum for error detection.

o The UDP packet is called a user datagram. A user datagram is encapsulated in the
data field of an IP datagram.

o Transmission Control Protocol (TCP) is one of the transport layer protocols in the
TCP/IP protocol suite.

o TCP provides process-to-process, full-duplex, and connection-oriented service.

o The unit of data transfer between two devices using TCP software is called a segment;
it has 20 to 60 bytes of header, followed by data from the application program.

o A TCP connection normally consists of three phases: connection establishment,
data transfer, and connection termination.

o Connection establishment requires three-way handshaking; connection termination
requires three- or four-way handshaking.

o TCP uses flow control, implemented as a sliding window mechanism, to avoid
overwhelming a receiver with data.

o The TCP window size is determined by the receiver-advertised window size (rwnd)
or the congestion window size (cwnd), whichever is smaller. The window can be
opened or closed by the receiver, but should not be shrunk.

o The bytes of data being transferred in each connection are numbered by TCP. The
numbering starts with a randomly generated number.

o TCP uses error control to provide a reliable service. Error control is handled by the
checksum, acknowledgment, and time-out. Corrupted and lost segments are retrans­
mitted, and duplicate segments are discarded. Data may arrive out of order and are
temporarily stored by the receiving TCP, but TCP guarantees that no out-of-order
segment is delivered to the process.

o In modem implementations, a retransmission occurs if the retransmission timer
expires or three duplicate ACK segments have arrived.

o SCTP is a message-oriented, reliable protocol that combines the good features of
UDP and TCP.

o SCTP provides additional services not provided by UDP or Tep, such as multiple-
stream and multihoming services.

o SCTP is a connection-oriented protocol. An SCTP connection is called an association.

o SCTP uses the term packet to define a transportation unit.

o In SCTP, control information and data information are carried in separate chunks.
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o An SCTP packet can contain control chunks and data chunks with control chunks
coming before data chunks.

o In SCTP, each data chunk is numbered using a transmission sequence number (TSN).

o To distinguish between different streams, SCTP uses the sequence identifier (SI).

o To distinguish between different data chunks belonging to the same stream, SCTP
uses the stream sequence number (SSN).

o Data chunks are identified by three identifiers: TSN, SI, and SSN. TSN is a cumula­
tive number recognized by the whole association; SSN starts from 0 in each stream.

o SCTP acknowledgment numbers are used only to acknowledge data chunks; control
chunks are acknowledged, if needed, by another control chunk.

o An SCTP association is normally established using four packets (four-way hand­
shaking). An association is normally terminated using three packets (three-way
handshaking).

o An SCTP association uses a cookie to prevent blind flooding attacks and a verifica­
tion tag to avoid insertion attacks.

o SCTP provides flow control, error control, and congestion control.

o The SCTP acknowledgment SACK reports the cumulative TSN, the TSN of the
last data chunk received in order, and selective TSNs that have been received.

23.8 PRACTICE SET

Review Questions

1. In cases where reliability is not of primary importance, UDP would make a good
transport protocol. Give examples of specific cases.

2. Are both UDP and IP unreliable to the same degree? Why or why not?

3. Do port addresses need to be unique? Why or why not? Why are port addresses
shorter than IP addresses?

4. What is the dictionary definition of the word ephemeral? How does it apply to the
concept of the ephemeral port number?

5. What is the minimum size of a UDP datagram?

6. What is the maximum size of a UDP datagram?

7. What is the minimum size of the process data that can be encapsulated in a UDP
datagram?

8. What is the maximum size of the process data that can be encapsulated in a UDP
datagram?

9. Compare the TCP header and the UDP header. List the fields in the TCP header
that are missing from UDP header. Give the reason for their absence.

10. UDP is a message-oriented protocol. TCP is a byte-oriented protocol. If an appli­
cation needs to protect the boundaries of its message, which protocol should be
used, UDP or TCP?
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11. What can you say about the TCP segment in which the value of the control field is
one of the following?

a. 000000

b. 000001

c. 010001

12. What is the maximum size of the TCP header? What is the minimum size of the
TCP header?

Exercises

13. Show the entries for the header of a UDP user datagram that carries a message from
a TFTP client to a TFTP server. Fill the checksum field with Os. Choose an appro­
priate ephemeral port number and the correct well-known port number. The length
of data is 40 bytes. Show the UDP packet, using the format in Figure 23.9.

14. An SNMP client residing on a host with IP address 122.45.12.7 sends a message to
an SNMP server residing on a host with IP address 200.112.45.90. What is the pair
of sockets used in this communication?

15. A TFTP server residing on a host with IP address 130.45.12.7 sends a message to a
TFTP client residing on a host with IP address 14.90.90.33. What is the pair of
sockets used in this communication?

16. A client has a packet of 68,000 bytes. Show how this packet can be transferred by
using only one UDP user datagram.

17. A client uses UDP to send data to a server. The data are 16 bytes. Calculate the effi­
ciency of this transmission at the UDP level (ratio of useful bytes to total bytes).

18. Redo Exercise 17, calculating the efficiency of transmission at the IP leveL Assume
no options for the IP header.

19. Redo Exercise 18, calculating the efficiency of transmission at the data link layer.
Assume no options for the IP header and use Ethernet at the data link layer.

20. The following is a dump of a UDP header in hexadecimal format.

0632000DOO lCE217

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice versa?

f. What is the client process?

21. An IP datagram is carrying a TCP segment destined for address 130.14.16.17/16. The
destination port address is corrupted, and it arrives at destination 130.14.16.19/16.
How does the receiving TCP react to this error?

22. In TCP, if the value of HLEN is 0111, how many bytes of option are included in
the segment?
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23. Show the entries for the header of a TCP segment that carries a message from an
FTP client to an FTP server. Fill the checksum field with Os. Choose an appropriate
ephemeral port number and the correct well-known port number. The length of the
data is 40 bytes.

24. The following is a dump of a TCP header in hexadecimal format.

05320017 oo1סס000 00000000 5OO207FF 00000000

a. What is the source port number?

b. What is the destination port number?

c. What the sequence number?

d. What is the acknowledgment number?

e. What is the length of the header?

f. What is the type of the segment?

g. What is the window size?

25. To make the initial sequence number a random number, most systems start the counter
at 1 during bootstrap and increment the counter by 64,000 every 0.5 s. How long
does it take for the counter to wrap around?

26. In a connection, the value of cwnd is 3000 and the value of rwnd is 5000. The host has
sent 2000 bytes which has not been acknowledged. How many more bytes can be sent?

27. TCP opens a connection using an initial sequence number (ISN) of 14,534. The
other party opens the connection with an ISN of 21,732. Show the three TCP seg­
ments during the connection establishment.

28. A client uses TCP to send data to a server. The data are 16 bytes. Calculate the effi­
ciency of this transmission at the TCP level (ratio of useful bytes to total bytes).
Calculate the efficiency of transmission at the IP level. Assume no options for the
IP header. Calculate the efficiency of transmission at the data link layer. Assume no
options for the IF header and use Ethernet at the data link layer.

29. TCP is sending data at 1 Mbyte/s. If the sequence number starts with 7000, how
long does it take before the sequence number goes back to zero?

30. A TCP connection is using a window size of 10,000 bytes, and the previous
acknowledgment number was 22,001. It receives a segment with acknowledgment
number 24,001 and window size advertisement of 12,000. Draw a diagram to show
the situation of the window before and after.

31. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a figure
to show the situation of the window after the following two events.

a. An ACK segment with the acknowledgment number 2500 and window size
advertisement 4000 is received.

b. A segment carrying 1000 bytes is sent.

32. In SCTP, the value of the cumulative TSN in a SACK is 23. The value of the previous
cumulative TSN in the SACK was 29. What is the problem?

33. In SCTP, the state of a receiver is as follows:

a. The receiving queue has chunks 1 to 8, 11 to 14, and 16 to 20.

b. There are 1800 bytes of space in the queue.
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c. The value of lastAck is 4.

d. No duplicate chunk has been received.

e. The value of cumTSN is 5.
Show the contents of the receiving queue and the variables.

34. In SCTP, the state of a sender is as follows:

a. The sending queue has chunks 18 to 23.

b. The value of cumTSN is 20.

c. The value of the window size is 2000 bytes.

d. The value of inTransit is 200.

If each data chunk contains 100 bytes of data, how many DATA chunks can be sent
now? What is the next DATA chunk to be sent?

Research Activities
35. Find more information about ICANN. What was it called before its name was changed?

36. TCP uses a transition state diagram to handle sending and receiving segments.
Find out about this diagram and how it handles flow and control.

37. SCTP uses a transition state diagram to handle sending and receiving segments.
Find out about this diagram and how it handles flow and control.

38. What is the half-open case in TCP?

39. What is the half-duplex close case in TCP?

40. The tcpdump command in UNIX or LINUX can be used to print the headers
of packets of a network interface. Use tcpdump to see the segments sent and received.

41. In SCTP, find out what happens if a SACK chunk is delayed or lost.

42. Find the name and functions of timers used in TCP.
43. Find the name and functions of timers used in SCTP.

44. Find out more about ECN in SCTP. Find the format of these two chunks.

45. Some application programs, such as FTP, need more than one connection when
using TCP. Find how the multistream service of SCTP can help these applications
establish only one association with several streams.


